\qquad

Recursive Worksheet

Determine the $3^{\text {rd }}, 4^{\text {th }}$, and $5^{\text {th }}$ terms of the sequence described by the recursive definition.

1) $a_{1}=9 ; a_{n}=\frac{1}{3} a_{n-1}$
2) $a_{1}=4 ; a_{n}=\left(a_{n-1}\right)^{2}-10$
3) $a_{1}=\frac{1}{2} ; a_{n}=\frac{n}{n+1}\left(a_{n-1}+1\right)$
4) $a_{1}=2 ; a_{2}=4 ; a_{n}=a_{n-1} \bullet a_{n-2}$
5) $a_{1}=7 ; a_{2}=3 ; a_{n}=a_{n-1}-2 a_{n-2}$

Give a recursive definition for the sequence.
6) $81,27,9,3, \ldots$
7) $1,3,7,13,21,31, \ldots$
8) $1,2,6,24,120,720, \ldots$
9) a) Give the first eight terms of the sequence defined recursively by $a_{1}=4, a_{2}=8 ; a_{n}=\frac{a_{n-1}}{a_{n-2}}$.
b) Observing the pattern you get in part (a), tell what the $100^{\text {th }}$ term of the sequence will be.
10) The sum of the first n terms of a series is $\boldsymbol{S}_{\boldsymbol{n}}=\boldsymbol{n}^{2}+4 \boldsymbol{n}$. Find $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$.

Hint: You're looking for terms.
The formula gives you $\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \boldsymbol{S}_{3}$.
11) The sum of the first n terms of a series is $S_{n}=2 \boldsymbol{n}^{2}$.
a. Find $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$.
b. Write a rule for $S_{n}-S_{n-1}$.
12) Determine the sum of all positive 3 -digit numbers divisible by 6 .
13) Determine the sum of all positive odd numbers less than 400 that are divisible by 5 .

