Arithmetic and Geometric Sequences and Series Worksheet

Tell whether the sequence is arithmetic, geometric or neither. If it is arithmetic, determine the common difference. If it is geometric, determine the common ratio.

8)
$$\frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \dots$$

4)
$$\frac{1}{3}, \frac{1}{6}, \frac{1}{9}, \frac{1}{12}, \dots$$

5)
$$4, -2, 1, -\frac{1}{2}, \dots$$

Determine the value of the specified term.

13) Tenth term of
$$\frac{1}{4}, \frac{1}{2}, 1, 2, ...$$

Find the specified term. Round to three decimal places if necessary.

15) Sixty-first term of the sequence for which
$$a_1 = 4$$
 and $r = 0.95$

16) Eighty-third term of the sequence for which
$$a_1 = 8$$
 and $r = 1.01$

17) Seventy-third term of the sequence for which
$$a_1 = 18$$
 and $d = -4$

18) Ninety-fifth term of the sequence for which
$$a_1 = -14$$
 and $d = -3$

- 19) Determine S_{22} for 1 + 5 + 9 + ...
- 20) Determine S_{27} for a series with $a_1 = 17$ and d = -4
- 21) Evaluate: $\sum_{k=1}^{45} 2 3(k-1)$
- 22) Determine S_8 for 1 + 3 + 9 + ...
- 23) Determine S_{10} for $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ...$
- 24) Determine S_1 for the series with $a_1 = 4$ and r = 1.2
- 25) Evaluate $\sum_{k=1}^{6} 4 \cdot 3^{k-1}$

For 26 - 28, use the given series to determine parts a - c:

- 26) 4, 24, 124, 624, ...
 - a) a_n
 - b) A recursive definition for S_n
 - c) S₄
- 27) 4, 24, 144, 864, ...
 - a) a_n
 - b) A recursive definition for S_n
 - c) S₈
- 28) 4, 24, 44, 64, 84, ...
 - a) a_n
 - b) A recursive definition for S_n
 - c) S_{23}