Name _____

Honors PreCalc – Chapter 3 Homework Packet

- 1) Suppose that the average cost to build a new home doubles every 22 years. If the average cost to build a new home is currently \$375,000, what will be the cost if you are ready to build your first home in 15 years?
- 2) Identify the equation of the asymptote for each graph.
- a) $f(x) = e^x$ b) $f(x) = e^x 5$ c) $f(x) = e^x + 8$ d) $f(x) = e^{x-2}$ e) $f(x) = -\frac{1}{2}e^{-x}$

- 3) You invest \$14,000 in an account that compounds 6% per year. If you leave the money in the account for 25 years, how much more money will you have if the 6% is compounded quarterly than if the 6% is compounded annually?
- 4) Sketch the graph of $f(x) = 2^{x-3} 5$. Label at least three points. Try to sketch the graph without using a graphing calculator. Instead, focus on the transformations of the parent function.

- 5) Fill in the blanks for the function $f(x) = e^x$.
 - a) As x approaches infinity, f(x) approaches _____.
 - b) As x approaches negative infinity, f(x) approaches _____.
- 6) A Honda Civic depreciates in value at a rate of about 11% per year. If you bought a Civic for \$19,700, how much will it be worth after 5 years?

7) The value of your home increases 5% per year for a ten-year period. What is the overall percent increase of the value over the ten-year period?

9) Which of the following functions are equivalent?

a)
$$y = \frac{1}{5} \left(\frac{3}{4}\right)^x$$
 b) $y = 5^{-1} \left(\frac{4}{3}\right)^{-x}$ c) $f(x) = \frac{3}{20} \left(\frac{3}{4}\right)^{x-1}$ d) $g(x) = \left(\frac{4}{15}\right) \left(\frac{3}{4}\right)^{x+1}$

10) Fill out the table below for the function $y = 2^x - 2$.

asymptote	
x-intercept	
y-intercept	
domain	
range	

- 11) The population *P* (in millions) of Italy can be modeled using the formula $P = 57.563e^{0.0052t}$ where *t* represents the year with *t* = 0 corresponding to the year 2000.
 - a) According to the model, is the population of Italy increasing or decreasing? How do you know?
 - b) Use the model to predict the population in the year 2020.

- 12) Danielle invests \$7,103 in a savings account with a fixed interest rate of 2% compounded continuously. What will the account balance be after 6 years?
- 13) Pranav invests \$2,295 in a savings account with a fixed annual interest rate compounded 12 times per year. After 12 years, the balance is \$3,288.01. What is the interest rate of the account?
- 14) Brenda invests a sum of money in a retirement account with a fixed annual rate of 3% compounded continuously. After 13 years, the balance reaches \$3,540.32. What was the amount if the initial investment?
- 15) For each graph, determine the domain, range, intercepts, asymptotes, and end behavior. Write the equation of the function.

16) Simplify using only positive exponents.

a)
$$-3x^{-3}$$

b)
$$-5\left(\frac{3}{2}\right)(4-9x)^{\frac{-1}{2}}(-9)$$
 c) $2\left(\frac{2}{2-x}\right)\left[\frac{-2}{(2-x)^2}\right]$

d)
$$(16x^2y)^{\frac{3}{4}}$$
 e) $-\frac{x^{\frac{-1}{2}}}{2}\sin\sqrt{x}$ f) $\frac{\sqrt{4x-16}}{\sqrt[4]{(x-4)^3}}$

g)
$$-4\left(\frac{2x-1}{2x+1}\right)^{-3}\left[\frac{2(2x+1)-2(2x-1)}{(2x+1)^2}\right]$$
 h) $\frac{\frac{1}{2}(2x+5)^{-\frac{3}{2}}}{\frac{3}{2}}$

i)
$$\left(\frac{1}{x^{-2}} + \frac{4}{x^{-1}y^{-1}} + \frac{1}{y^{-2}}\right)^{\frac{-1}{2}}$$
 j) $3x(3x+1)^{-1} - 4$

17) Graph $f(x) = 2^x$ and $g(x) = \log_2 x$ on the same coordinate plane. What do you notice about the two graphs?

18) Determine the value of each without using a calculator.

a)
$$\log 1000$$
 b) $\log_3 81$ c) $\log_5 \frac{1}{125}$ d) $\ln e$

e) $\ln e^8$ f) $\log 10^n$ g) $\log_{\frac{1}{10}} 100$ h) $\ln 1$

19) Without using a calculator, determine what two whole numbers the following values must be between.

a) $\log_9 100$ b) $\log_2 15$ c) $\log_{15} 300$

20) Evaluate. You may use a calculator.

a) $\ln 84$ b) $\log_8 15$ c) $\ln 999$ d) $\log_{12} 250$

21) Determine the inverse of each function.

a) $y = \frac{1}{2} \Box 4^x$ b) $f(x) = 3e^x - 1$

22) What asymptote(s) does each graph have?

a) $f(x) = \log(x+5)$ b) $y = \log_6 x - 4$ c) $g(x) = -3\log_4 x$

23) Sketch the graph of each. Graph the asymptotes.

a) $y = \log(-x)$ b) $f(x) = 2\log_2(x-1)$

24) Carbon-14 has a half-life of 5,730 years. A fossil is found that has 13% of its original carbon-14. Approximately how old is the fossil?

25) Expand each expression.

a) $\log_4(xz)$

b) $\ln \sqrt[3]{\frac{y^4}{z^5}}$

c)
$$\log \sqrt{z\sqrt{y\sqrt{x}}}$$
 d) $\ln \frac{\sqrt[3]{z}}{x\sqrt{y}}$

26) Write the expression as one logarithm.

a) $\log_3 x + \log_3(5y)$

b) $\ln x - \ln(7y)$

c)
$$2\log_a x + \frac{1}{3}\log_a (x-2) - 5\log_a (2x+3)$$

d) $\frac{1}{3}[2\ln(x+3) + \ln x - \ln(x^2 - 1)]$

e)
$$\ln y^3 + \frac{1}{3}\ln(x^3y^6) - 5\ln y$$
 f) $2\ln x - 4\ln\left(\frac{1}{y}\right) - 3\ln(xy)$

27) Evaluate. Round to the nearest hundredth.

a)
$$\frac{\ln 7}{\log_5 9}$$
 b) $\log_5 81$

28) Use your graphing calculator to solve the following equation: $\ln(x+3) = (\log_4 x)^2$

29) Determine the exact value of the logarithm without using a calculator (if possible).

a)
$$\log_6 \sqrt[3]{6}$$
 b) $\log_4(-16)$ c) $\log_5 \frac{1}{125}$ d) $\ln e^3 - \ln e^7$

e) $\ln 1$ f) $\log_{10} 0$ g) $\ln \sqrt[5]{e^3}$ h) $\log_4 2 + \log_4 32$

30) Simplify completely without using a calculator. Leave in exact form.

a)
$$10^{\log(\frac{1}{100})}$$
 b) $e^{\ln 7}$ c) $\log_5 7 + \frac{3}{\ln 5}$

31) Sketch the graph of the following. Identify the domain and range of each.

a)
$$f(x) = 1 + 2\log x$$

b) $f(x) = \ln(2x+4)$

c)
$$y = \log_2(x-1)$$
 d) $g(x) = -\log(-x)$

32) Determine the *x*- and *y*-intercepts of each of the following. Leave as an exact answer.

a)
$$y = 2\ln(3x)$$

b) $h(x) = -\log_5(x+7)$

33) Write the following function as a piecewise function and then graph: $f(x) = \log_3 |x-2|$

- 34) A log function is in the form $y = \log_b(x-a)$ and passes through the points (7,0) and (19,1). Determine the equation of the function.
- 35) A log function is in the form $y = \log_b(x-a)$ and passes through the points (-6,0) and (42,2). Determine the equation of the function.
- 36) A log function has an asymptote at x = 1 and passes through the points (2,0) and (3, -1). Write the equation of the function.

37) Write the equation of the log function shown below.

38) Write a logarithmic function that approaches negative infinity as *x* approaches infinity.

39) Students in math class took an exam and then took a retest monthly with an equivalent exam. The average scores for the class are given by the human memory model $f(t) = 80-17\log(t+1)$ for $t \in [0,12]$ where t is the time in months.

a) What was the average score on the original exam?

b) What was the average score after 10 months?

40) Solve.

a)
$$e^{x^2-3} = e^{x-2}$$
 b) $2^{x+1} = e^{1-x}$ c) $3^{x^2} = 7^{6-x}$

d)
$$e^{2x} - 5e^x + 6 = 0$$

e) $\frac{400}{1 + e^{-x}} = 350$

41) Solve.

a)
$$\ln \sqrt{x-8} = 5$$
 b) $\ln x - \ln (x+1) = 2$

c)
$$\ln(x+1) - \ln(x-2) = \ln x$$

d) $\log 8x - \log(1+\sqrt{x}) = 2$

42) Solve.

a) $2x^2e^{2x} + 2xe^{2x} = 0$

b)
$$2x\ln\left(\frac{1}{x}\right) - x = 0$$